organic papers

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Graeme J. Gainsford,^a* Roman Luboradzki^b and Zbigniew Pakulski^c

^aIndustrial Research Limited, PO Box 31-310, Lower Hutt, New Zealand, ^bInstitute of Physical Chemistry, Polish Academy of Sciences, O1-224 Warsaw, Poland, and ^cInstitute of Organic Chemistry, Polish Academy of Sciences, O1-224 Warsaw, Poland

Correspondence e-mail: g.gainsford@irl.cri.nz

Key indicators

Single-crystal X-ray study T = 293 K Mean σ (C–C) = 0.005 Å R factor = 0.044 wR factor = 0.084 Data-to-parameter ratio = 6.5

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

(5-Methoxycarbonyl)pentyl *a*-D-mannopyranoside

In the crystalline state, the title compound, $C_{13}H_{24}O_8$, forms hydrogen-bonded carbohydrate bilayers with interdigitated hydrophobically interacting alkyl chains.

Comment

The title compound, (I), was prepared as part of a project aimed at the synthesis of potential ligands for mannose-specific binding proteins (Furneaux *et al.*, 2002).

The crystal structure of (I) contains one independent molecule of the title compound per asymmetric unit (Fig. 1). The molecules are bound into a three-dimensional lattice with mannopyranoside hydrogen-bonded bilayers (generated by the screw axis along the b axis) normal to the c axis, separated by interdigitated hydrophobically interacting alkyl chains (C7-C13; Fig. 2). This structural motif has been observed before, and is commonly associated with carbohydrate derivatives having long-chain alkyl substituents that form liquidcrystal phases (Abe et al., 2000). Binding the sugar rings together are four classic hydrogen bonds which utilize all four hydroxy H atoms (H···O = 1.94–2.25 Å and O – H···O = 153– 179°) (Desiraju & Steiner, 1999). The acceptor atoms are O3 (with bonds from H atoms on O2 and O6 of different molecules), and O5 and O6 (with bonds from H atoms on O3 and O4 from another adjacent molecule, respectively). The sixmembered ring (O5/C1–C5) adopts the expected regular ${}^{4}C_{1}$

© 2004 International Union of Crystallography Printed in Great Britain – all rights reserved

Figure 1

The molecular structure of (I). Displacement ellipsoids are drawn at the 30% probability level. H atoms are shown as circles of arbitrary radii.

Received 1 March 2004 Accepted 15 March 2004 Online 27 March 2004

Figure 2

The packing of (I), viewed down the *a* axis, with the *c* axis vertical (Spek, 2003). Hydrogen bonds are shown as dashed lines.

chair conformation, with Q, θ and φ values of 0.548 (4) Å, 3.0 (4) and 276 (8)°, respectively (Cremer & Pople, 1975), and the substituted alkyl aglycon adopts a zigzag orientation.

There are at least 45 α -D-mannopyranoside crystal structures reported in the literature [CONQUEST (Bruno et al., 2002); CSD version January 2004 (Allen, 2002)] but few involve compounds with alkyl aglycons. However, there has been some interest in long-chain alkyl 1-thio- α -D-mannopyranosides (Carter et al., 1982; Miethchen & Hein, 2000) and alkyl α -D- and β -D-glucopyranosides (Adasch *et al.*, 1998; Hoffmann et al., 2000), all of which display a liquid-crystal phase, with similar structural motifs to that reported here. Some relevant O- α -D-mannopyranosides which have been crystallographically analysed are the O- α -mannopyranosyl- $(1 \rightarrow 3)$ -L-threonine (Darbon *et al.*, 1984), *p*-nitrophenyl α -Dmannopyranoside (Fernandez-Castaño & Foces-Foces, 1996; Agianian *et al.*, 1997) and methyl 2-*O*- α -D-mannopyranosyl- α -D-mannopyranoside (Srikrishnan et al., 1989). In all cases, the sugar rings adopt the ${}^{4}C_{1}$ conformation.

Experimental

The title compound was prepared as described previously (Furneaux et al., 2002). Subsequently it was recrystallized from ethyl acetate.

Crystal data

а b с V

C13H24O8	Mo $K\alpha$ radiation		
$M_r = 308.32$	Cell parameters from 969		
Orthorhombic, $P2_12_12_1$	reflections		
a = 6.1389 (2) Å	$\theta = 1.0-23.8^{\circ}$		
b = 7.2316(2) Å	$\mu = 0.11 \text{ mm}^{-1}$		
c = 33.9218 (14) Å	T = 293 (2) K		
$V = 1505.93(9) \text{ Å}^3$	Poor quality, needle, colourless		
Z = 4	$1.0 \times 0.2 \times 0.1 \text{ mm}$		
$D_x = 1.360 \text{ Mg m}^{-3}$			
-			

 $R_{\rm int}=0.032$ $\theta_{\rm max} = 23.8^{\circ}$ $h = -6 \rightarrow 6$

 $k = -8 \rightarrow 8$

 $l = -37 \rightarrow 38$

Data collection

Nonius KappaCCD diffractometer φ and ω scans Absorption correction: none 4096 measured reflections 1283 independent reflections 1112 reflections with $I > 2\sigma(I)$

Refinement

ł

Refinement on F^2	$w = 1/[\sigma^2(F_o^2) + (0.0321P)^2]$
$R[F^2 > 2\sigma(F^2)] = 0.044$	+ 0.3006P]
$vR(F^2) = 0.084$	where $P = (F_o^2 + 2F_c^2)/3$
S = 1.12	$(\Delta/\sigma)_{\rm max} < 0.001$
283 reflections	$\Delta \rho_{\rm max} = 0.15 \ {\rm e} \ {\rm \AA}^{-3}$
96 parameters	$\Delta \rho_{\rm min} = -0.16 \text{ e } \text{\AA}^{-3}$
H-atom parameters constrained	

Table 1

Selected geometric parameters (Å, °).

O1-C1	1.402 (4)	O8-C12	1.344 (4)
01-C1-C2	108.1 (3)	O5-C1-C2	111.9 (3)
C7-O1-C1-C2	-178.2 (2)	C10-C11-C12-O8	157.1 (3)

All H atoms were geometrically constrained to ride on their parent atom (C-H = 0.96–0.98 Å and O-H = 0.82 Å), with U_{iso} values 1.5 and 1.2 times the $U_{\rm eq}$ values of the parent atoms O/C13 and the remaining C atoms, respectively. In the absence of significant anomalous dispersion effects, Friedel pairs were averaged, and the absolute configuration cannot be determined from the crystallographic experiment; it was assumed from the synthesis.

Data collection: KappaCCD Software (Nonius, 1997); cell refinement: DENZO and SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO and SCALEPACK; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2003).

References

- Abe, Y., Fujiwara, M., Ohbu, K. & Harata, K. (2000). J. Chem. Soc. Perkin Trans. 2, pp. 341-351.
- Adasch, V., Hoffmann, B., Milius, W., Platz, G. & Voss, G. (1998). Carbohydr. Res. 314, 177-187.
- Agianian, B, Perrakis, A., Kanellopoulos, P. N., Sheldrick, B. & Hamodrakas, S. J. (1997). Acta Cryst. C53, 811-814.
- Allen, F. H. (2002). Acta Cryst. B58, 370-379.
- Bruno, I. J, Cole, J. C, Edgington, P. R., Kessler, M., Macrae, C. F., McCabe, P., Pearson, J. & Taylor, R. (2002). Acta Cryst. B58, 389-397.
- Carter, D. C, Ruble, J. R. & Jeffrey, G. A. (1982). Carbohydr. Res. 102, 59-67.
- Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.
- Darbon, N, Oddon, Y., Lacombe, J.-M. & Pavia, A. A. (1984). Carbohydr. Res. 130, 55-64.

Desiraju, G. R. & Steiner, T. (1999). The Weak Hydrogen Bond in Structural Chemistry and Biology. Oxford University Press.

Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.

Fernandez-Castaño, C. & Foces-Foces, C. (1996). Acta Cryst. C52, 1586-1588.

- Furneaux, R. H., Pakulski, Z. & Tyler, P. C. (2002). Can. J. Chem. 80, 964–972. Hoffmann, B., Milius, W., Voss, G., Wunschel, M., van Smaalen, S., Diele, S. &
- Platz, G. (2000). Carbohydr. Res. 323, 192-201.
- Miethchen, R. & Hein, M. (2000). Carbohydr. Res. 327, 169-183.

Nonius (1997). KappaCCD Software. Nonius BV, Delft, The Netherlands.

- Otwinowski, Z. & Minor, W. (1997). *Methods in Enzymology*, Vol. 276, *Macomolecular Crystallography*, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.
- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.

Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.

Srikrishnan, T., Chowdhary, M. S. & Matta, K. L. (1989). Carbohydr. Res. 186, 167–175.